Star Walk 2
Star Walk Kids
Star Walk
Solar Walk
Sky Live
Dino Walk
Geo Walk
Next - Numbers
Press Room
Privacy Policy
About us
App Store
Google Play
September 4th, 2015

Entranced by a Transit

Saturn’s moon Dione crosses the face of the giant planet in this view, a phenomenon astronomers call a transit. Transits play an important role in astronomy and can be used to study the orbits of planets and their atmospheres, both in our solar system and in others.

By carefully timing and observing transits in the Saturn system, like that of Dione (698 miles or 1123 kilometers across), scientists can more precisely determine the orbital parameters  of Saturn’s moons.

This view looks toward the unilluminated side of the rings from about 0.3 degrees below the ring plane. The image was taken in visible green light with the Cassini spacecraft narrow-angle camera on May 21, 2015.

The view was acquired at a distance of approximately 1.4 million miles (2.3 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 119 degrees. Image scale is 9 miles (14 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

For more information about the Cassini-Huygens mission visit or . The Cassini imaging team homepage is at .


Credit: NASA/JPL-Caltech/Space Science Institute

August 31st, 2015

Sheets of Debris From a Stellar Explosion (N 49, DEM L 190)

Resembling the puffs of smoke and sparks from a summer fireworks display in this image from NASA’s Hubble Space Telescope, these delicate filaments are actually sheets of debris from a stellar explosion in a neighboring galaxy. Hubble’s target was a supernova remnant within the Large Magellanic Cloud (LMC), a nearby, small companion galaxy to the Milky Way visible from the southern hemisphere.

Denoted N 49, or DEM L 190, this remnant is from a massive star that died in a supernova blast whose light would have reached Earth thousands of years ago. This filamentary material will eventually be recycled into building new generations of stars in the LMC. Our own Sun and planets are constructed from similar debris of supernovae that exploded in the Milky Way billions of years ago.

This seemingly gentle structure also harbors a very powerful spinning neutron star that may be the central remnant from the initial blast. It is quite common for the core of an exploded supernova star to become a spinning neutron star (also called a pulsar – because of the regular pulses of energy from the rotational spin) after the immediate shedding of the star’s outer layers. In the case of N 49, not only is the neutron star spinning at a rate of once every 8 seconds, it also has a super-strong magnetic field a thousand trillion times stronger than Earth’s magnetic field. This places this star into the exclusive class of objects called “magnetars.”

On March 5, 1979, this neutron star displayed a historic gamma-ray burst episode that was detected by numerous Earth-orbiting satellites. Gamma rays have a million or more times the energy of visible light photons. The Earth’s atmosphere protects us by blocking gamma rays that originate from outer space. The neutron star in N 49 has had several subsequent gamma-ray emissions, and is now recognized as a “soft gamma-ray repeater.” These objects are a peculiar class of stars producing gamma rays that are less energetic than those emitted by most gamma-ray bursters.

The neutron star in N 49 is also emitting X-rays, whose energies are slightly less than that of soft gamma rays. High-resolution X-ray satellites have resolved a point source near the center of N 49, the likely X-ray counterpart of the soft gamma-ray repeater. Diffuse filaments and knots throughout the supernova remnant are also visible in X-ray. The filamentary features visible in the optical image represent the blast wave sweeping through the ambient interstellar medium and nearby dense molecular clouds.

Today, N 49 is the target of investigations led by Hubble astronomers You-Hua Chu from the University of Illinois at Urbana-Champaign and Rosa Williams from the University of Massachusetts. Members of this science team are interested in understanding whether small cloudlets in the interstellar medium of the LMC may have a marked effect on the physical structure and evolution of this supernova remnant.

The Hubble Heritage image of N 49 is a color representation of data taken in July 2000, with Hubble’s Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur ([S II]), oxygen ([O III]), and hydrogen (H-alpha). The color image has been superimposed on a black-and-white image of stars in the same field also taken with Hubble.

Object Names: LMC N 49, DEM L 190

Image Type: Astronomical

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA)

Acknowledgment: Y.-H. Chu (UIUC), S. Kulkarni (Caltech), and R. Rothschild (UCSD)

August 21st, 2015

Hubble Opens New Eyes on the Universe

This celestial object looks like a delicate butterfly. But it is far from serene.

What resemble dainty butterfly wings are actually roiling cauldrons of gas heated to more than 36,000 degrees Fahrenheit. The gas is tearing across space at more than 600,000 miles an hour‚ÄĒfast enough to travel from Earth to the Moon in 24 minutes!

A dying star that was once about five times the mass of the Sun is at the center of this fury. It has ejected its envelope of gases and is now unleashing a stream of ultraviolet radiation that is making the cast-off material glow. This object is an example of a planetary nebula, so-named because many of them have a round appearance resembling that of a planet when viewed through a small telescope.

The Wide Field Camera 3 (WFC3), a new camera aboard NASA’s Hubble Space Telescope, snapped this image of the planetary nebula, catalogued as NGC 6302, but more popularly called the Bug Nebula or the Butterfly Nebula. WFC3 was installed by NASA astronauts in May 2009, during the servicing mission to upgrade and repair the 19-year-old Hubble telescope.

NGC 6302 lies within our Milky Way galaxy, roughly 3,800 light-years away in the constellation Scorpius. The glowing gas is the star’s outer layers, expelled over about 2,200 years. The “butterfly” stretches for more than two light-years, which is about half the distance from the Sun to the nearest star, Alpha Centauri.

The central star itself cannot be seen, because it is hidden within a doughnut-shaped ring of dust, which appears as a dark band pinching the nebula in the center. The thick dust belt constricts the star’s outflow, creating the classic “bipolar” or hourglass shape displayed by some planetary nebulae.

The star’s surface temperature is estimated to be about 400,000 degrees Fahrenheit, making it one of the hottest known stars in our galaxy. Spectroscopic observations made with ground-based telescopes show that the gas is roughly 36,000 degrees Fahrenheit, which is unusually hot compared to a typical planetary nebula.

The WFC3 image reveals a complex history of ejections from the star. The star first evolved into a huge red-giant star, with a diameter of about 1,000 times that of our Sun. It then lost its extended outer layers. Some of this gas was cast off from its equator at a relatively slow speed, perhaps as low as 20,000 miles an hour, creating the doughnut-shaped ring. Other gas was ejected perpendicular to the ring at higher speeds, producing the elongated “wings” of the butterfly-shaped structure. Later, as the central star heated up, a much faster stellar wind, a stream of charged particles traveling at more than 2 million miles an hour, plowed through the existing wing-shaped structure, further modifying its shape.

The image also shows numerous finger-like projections pointing back to the star, which may mark denser blobs in the outflow that have resisted the pressure from the stellar wind.

The nebula’s reddish outer edges are largely due to light emitted by nitrogen, which marks the coolest gas visible in the picture. WFC3 is equipped with a wide variety of filters that isolate light emitted by various chemical elements, allowing astronomers to infer properties of the nebular gas, such as its temperature, density, and composition.

The white-colored regions are areas where light is emitted by sulfur. These are regions where fast-moving gas overtakes and collides with slow-moving gas that left the star at an earlier time, producing shock waves in the gas (the bright white edges on the sides facing the central star). The white blob with the crisp edge at upper right is an example of one of those shock waves.

NGC 6302 was imaged on July 27, 2009, with Hubble’s Wide Field Camera 3 in ultraviolet and visible light. Filters that isolate emissions from oxygen, helium, hydrogen, nitrogen, and sulfur from the planetary nebula were used to create this composite image.

These Hubble observations of the planetary nebula NGC 6302 are part of the Hubble Servicing Mission 4 Early Release Observations.

Object Name: NGC 6302 

Credit: NASA, ESA, and the Hubble SM4 ERO Team

August 17th, 2015

Seasonal Flows in Valles Marineris

Mars Reconnaissance Orbiter launched 10 years ago! One of the many discoveries from this mission is that there are seasonal flows on some steep slopes, that have a set of characteristics consistent with shallow seeps of salty water. They are called recurring slope lineae because they fade and disappear during cold seasons and reappear in warm seasons, repeating this pattern every Martian year.

The flows in this image, in a part of Coprates Chasma, are on a north-facing slope so they are active now, in northern spring. The flows emanate from the relatively bright bedrock and flow onto sandy fans, where they are remarkably straight, following linear channels. Valles Marineris contains more of these flows than everywhere else on Mars combined, and they are always active although on changing slope aspects with season. Future human explorers (and settlers?) will need water to drink, grow food, produce oxygen to breathe, and to produce rocket fuel. Bringing all of that water from Earth would be extremely expensive, so using water on Mars is essential.

Although there is plenty of water ice at high latitudes, surviving the cold winters would be difficult. An equatorial source of water would be preferable, so Valles Marineris may be the best destination. However, the chemistry of this water must be understood before betting any lives on it.

Written by: Alfred McEwen   (10 August 2015)

Credit: NASA/JPL/University of Arizona


August 14th, 2015

Hubble view of M 106

This image combines Hubble observations of M 106 with additional information captured by amateur astronomers Robert Gendler and Jay GaBany. Gendler combined Hubble data with his own observations to produce this stunning colour image.

M 106 is a relatively nearby spiral galaxy, a little over 20 million light-years away.